Multiple Modes of Action Potential Initiation and Propagation in Mitral Cell Primary Dendrite

Author:

Chen Wei R.1,Shen Gongyu Y.12,Shepherd Gordon M.1,Hines Michael L.3,Midtgaard Jens4

Affiliation:

1. Department of Neurobiology, School of Medicine and

2. College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310027, China; and

3. Department of Computer Science, Yale University, New Haven, Connecticut 06520-8001;

4. Department of Medical Physiology, University of Copenhagen, 7400 Copenhagen, Denmark

Abstract

The mitral cell primary dendrite plays an important role in transmitting distal olfactory nerve input from olfactory glomerulus to the soma-axon initial segment. To understand how dendritic active properties are involved in this transmission, we have combined dual soma and dendritic patch recordings with computational modeling to analyze action-potential initiation and propagation in the primary dendrite. In response to depolarizing current injection or distal olfactory nerve input, fast Na+action potentials were recorded along the entire length of the primary dendritic trunk. With weak-to-moderate olfactory nerve input, an action potential was initiated near the soma and then back-propagated into the primary dendrite. As olfactory nerve input increased, the initiation site suddenly shifted to the distal primary dendrite. Multi-compartmental modeling indicated that this abrupt shift of the spike-initiation site reflected an independent thresholding mechanism in the distal dendrite. When strong olfactory nerve excitation was paired with strong inhibition to the mitral cell basal secondary dendrites, a small fast prepotential was recorded at the soma, which indicated that an action potential was initiated in the distal primary dendrite but failed to propagate to the soma. As the inhibition became weaker, a “double-spike” was often observed at the dendritic recording site, corresponding to a single action potential at the soma. Simulation demonstrated that, in the course of forward propagation of the first dendritic spike, the action potential suddenly jumps from the middle of the dendrite to the axonal spike-initiation site, leaving the proximal part of primary dendrite unexcited by this initial dendritic spike. As Na+conductances in the proximal dendrite are not activated, they become available to support the back-propagation of the evoked somatic action potential to produce the second dendritic spike. In summary, the balance of spatially distributed excitatory and inhibitory inputs can dynamically switch the mitral cell firing among four different modes: axo-somatic initiation with back-propagation, dendritic initiation either with no forward propagation, forward propagation alone, or forward propagation followed by back-propagation.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3