CNS Activation by Noxious Heat to the Hand or Foot: Site-Dependent Delay in Sensory But Not Emotion Circuitry

Author:

Becerra L.,Iadarola M.,Borsook D.

Abstract

Recently, functional magnetic resonance imaging has been used as a novel method of evaluating the CNS response to noxious stimuli. In a previous study, a prolonged noxious thermal stimulus applied to the dorsum of the hand produced more than one hemodynamic response that was temporally segregated. The two major responses displayed activation in primary sensory regions (classic pain circuitry) and regions involved in emotion (reward/aversion circuitry), respectively. In the current study, we applied the same thermal stimulus separately to the dorsum of the left foot and the dorsum of the left hand in the same subjects and compared the hemodynamic responses to evaluate the effects of conduction distance on CNS activation within these two segregated systems. After stimulus delivery to the foot, the hemodynamic response in primary sensory networks occurs after a delay of 3.6 ± 1.3 s as compared with the response after hand stimulation. The relative delay of the hemodynamic response in reward/aversion regions is not significantly different between hand and foot stimulation (0.6 ± 2.1 s). These results within the primary sensory system are consistent with the greater conduction distance of the peripheral nerves from the hand versus the foot. The observation that the response within the reward/aversion pathways occurs with the same rapid temporal characteristics after either hand or foot stimulation supports the notion that the circuitry involved in the evaluation of aversive stimuli is rapid in onset and probably represents a major protective mechanism for survival.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3