Cooling reduces the cutaneous afferent firing response to vibratory stimuli in glabrous skin of the human foot sole

Author:

Lowrey Catherine R.1,Strzalkowski Nicholas D. J.1,Bent Leah R.1

Affiliation:

1. Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada

Abstract

Skin on the foot sole plays an important role in postural control. Cooling the skin of the foot is often used to induce anesthesia to determine the role of skin in motor and balance control. The effect of cooling on the four classes of mechanoreceptor in the skin is largely unknown, and thus the aim of the present study was to characterize the effects of cooling on individual skin receptors in the foot sole. Such insight will better isolate individual receptor contributions to balance control. Using microneurography, we recorded 39 single nerve afferents innervating mechanoreceptors in the skin of the foot sole in humans. Afferents were identified as fast-adapting (FA) or slowly adapting (SA) type I or II (FA I n = 16, FA II n = 7, SA I n = 6, SA II n = 11). Receptor response to vibration was compared before and after cooling of the receptive field (2–20 min). Overall, firing response was abolished in 30% of all receptors, and this was equally distributed across receptor type ( P = 0.69). Longer cooling times were more likely to reduce firing response below 50% of baseline; however, some afferent responses were abolished with shorter cooling times (2–5 min). Skin temperature was not a reliable indicator of the level of receptor activation and often became uncoupled from receptor response levels, suggesting caution in the use of this parameter as an indicator of anesthesia. When cooled, receptors preferentially coded lower frequencies in response to vibration. In response to a sustained indentation, SA receptors responded more like FA receptors, primarily coding “on-off” events.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3