Affiliation:
1. Physiologisches Institut, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
Abstract
Second-order vestibular neurons (2°VN) were identified in the isolated frog brain by the presence of monosynaptic excitatory postsynaptic potentials (EPSPs) after separate electrical stimulation of individual vestibular nerve branches. Combinations of one macular and the three semicircular canal nerve branches or combinations of two macular nerve branches were stimulated separately in different sets of experiments. Monosynaptic EPSPs evoked from the utricle or from the lagena converged with monosynaptic EPSPs from one of the three semicircular canal organs in ∼30% of 2°VN. Utricular afferent signals converged predominantly with horizontal canal afferent signals (74%), and lagenar afferent signals converged with anterior vertical (63%) or posterior vertical (37%) but not with horizontal canal afferent signals. This convergence pattern correlates with the coactivation of particular combinations of canal and otolith organs during natural head movements. A convergence of afferent saccular and canal signals was restricted to very few 2°VN (3%). In contrast to the considerable number of 2°VN that received an afferent input from the utricle or the lagena as well as from one of the three canal nerves (∼30%), smaller numbers of 2°VN (14% of each type of 2°otolith or 2°canal neuron) received an afferent input from only one particular otolith organ or from only one particular semicircular canal organ. Even fewer 2°VN received an afferent input from more than one semicircular canal or from more than one otolith nerve (∼7% each). Among 2°VN with afferent inputs from more than one otolith nerve, an afferent saccular nerve input was particularly rare (4–5%). The restricted convergence of afferent saccular inputs with other afferent otolith or canal inputs as well as the termination pattern of saccular afferent fibers are compatible with a substrate vibration sensitivity of this otolith organ in frog. The ascending and/or descending projections of identified 2°VN were determined by the presence of antidromic spikes. 2°VN mediating afferent utricular and/or semicircular canal nerve signals had ascending and/or descending axons. 2°VN mediating afferent lagenar or saccular nerve signals had descending but no ascending axons. The latter result is consistent with the absence of short-latency macular signals on extraocular motoneurons during vertical linear acceleration. Comparison of data from frog and cat demonstrated the presence of a similar organization pattern of maculo- and canal-ocular reflexes in both species.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献