Midline section of the medulla abolishes inspiratory activity and desynchronizes pre-inspiratory neuron rhythm on both sides of the medulla in newborn rats

Author:

Onimaru Hiroshi1,Tsuzawa Kayo1,Nakazono Yoshimi2,Janczewski Wiktor A.3

Affiliation:

1. Department of Physiology, Showa University School of Medicine, Tokyo, Japan;

2. Faculty of Science and Engineering, Aoyama Gakuin University, Tokyo, Japan; and

3. Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, California

Abstract

Each half of the medulla contains respiratory neurons that constitute two generators that control respiratory rhythm. One generator consists of the inspiratory neurons in the pre-Bötzinger complex (preBötC); the other, the pre-inspiratory (Pre-I) neurons in the parafacial respiratory group (pFRG), rostral to the preBötC. We investigated the contribution of the commissural fibers, connecting the respiratory rhythm generators located on the opposite side of the medulla to the generation of respiratory activity in brain stem-spinal cord preparation from 0- to 1-day-old rats. Pre-I neuron activity and the facial nerve and/or first lumbar (L1) root activity were recorded as indicators of the pFRG-driven rhythm. Fourth cervical ventral root (C4) root and/or hypoglossal (XII) nerve activity were recorded as indicators of preBötC-driven inspiratory activity. We found that a midline section that interrupted crossed fibers rostral to the obex irreversibly eliminated C4 and XII root activity, whereas the Pre-I neurons, facial nerve, and L1 roots remained rhythmically active. The facial and contralateral L1 nerve activities were synchronous, whereas right and left facial (and right and left L1) nerves lost synchrony. Optical recordings demonstrated that pFRG-driven burst activity was preserved after a midline section, whereas the preBötC neurons were no longer rhythmic. We conclude that in newborn rats, crossed excitatory interactions (via commissural fibers) are necessary for the generation of inspiratory bursts but not for the generation of rhythmic Pre-I neuron activity.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3