Role of ATP-Dependent Calcium Regulation in Modulation ofDrosophilaSynaptic Thermotolerance

Author:

Klose M. K.,Boulianne G. L.,Robertson R. M.,Atwood H. L.

Abstract

Maintenance of synaptic transmission requires regulation of intracellular Ca2+in presynaptic nerve terminals; loss of this regulation at elevated temperatures may cause synaptic failure. Accordingly, we examined the thermosensitivity of presynaptic calcium regulation in Drosophila larval neuromuscular junctions, testing for effects of disrupting calcium clearance. Motor neurons were loaded with the ratiometric Ca2+indicator Fura-dextran to monitor calcium regulation as temperature increased. Block of the Na+/Ca2+exchanger or removal of extracellular Ca2+prevented the normal temperature-induced increase in resting calcium. Conversely, two treatments that interfered with Ca2+clearance—inactivation of the endoplasmic reticulum Ca2+-ATPase with thapsigargin and inhibition of the plasma membrane Ca2+-ATPase with high pH—significantly accelerated the temperature-induced rise in resting Ca2+concentration and reduced the thermotolerance of synaptic transmission. Disrupting Ca2+-ATPase function by interfering with energy production also facilitated the temperature-induced rise in resting [Ca2+] and reduced thermotolerance of synaptic transmission. Conversely, fortifying energy levels with extra intracellular ATP extended the operating temperature range of both synaptic transmission and Ca2+regulation. In each of these cases, Ca2+elevations evoked by an electrical stimulation of the nerve (evoked Ca2+responses) failed when resting Ca2+remained >e 200 nM for several minutes. Failure of synaptic function was correlated with the release of intracellular calcium stores, and we provide evidence suggesting that release from the mitochondria disrupts evoked calcium responses and synaptic transmission. Thus the thermal limit of synaptic transmission may be directly linked to the stability of ATP-dependent mechanisms that regulate intracellular ion concentrations in the nerve terminal.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3