L-type calcium channel contributions to intrinsic excitability and synaptic activity during basolateral amygdala postnatal development

Author:

Zhang Yiming1,Garcia Esperanza1,Sack Anne-Sophie1,Snutch Terrance P.1

Affiliation:

1. Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada

Abstract

The amygdala contributes toward emotional processes such as fear, anxiety, and social cognition. Furthermore, evidence suggests that increased excitability of basolateral amygdala (BLA) principal neurons underlie certain neuropsychiatric disorders. Gain-of-function mutations in neuronal L-type calcium channels (LTCCs) are linked to neurodevelopmental diseases, including autism spectrum disorders (ASDs). While LTCCs are expressed throughout the BLA, direct evidence for increased LTCC activity affecting BLA excitability and potentially contributing to disease pathophysiology is lacking. In this study, we utilized a pharmacological approach to examine the contributions of LTCCs to BLA principal cell excitability and synaptic activity at immature (postnatal day 7, P7) and juvenile (P21) developmental stages. Acute upregulation of LTCC activity in brain slices by application of the agonist ( S)-Bay K 8644 resulted in increased intrinsic excitability properties including firing frequency response, plateau potential, and spike-frequency adaptation selectively in P7 neurons. Contrastingly, for P21 neurons, the main effect of ( S)-Bay K 8644 was to enhance burst firing. ( S)-Bay K 8644 increased spontaneous inhibitory synaptic currents at both P7 and P21 but did not affect evoked synaptic currents at either stage. ( S)-Bay K 8644 did not alter P7 spontaneous excitatory synaptic currents, although it increased current amplitude in P21 neurons. Overall, the results provide support for the notion that alteration of LTCC activity at specific periods of early brain development may lead to functional alterations to neuronal network activity and subsequently contribute to underlying mechanisms of amygdala-related neurological disorders. NEW & NOTEWORTHY The role of L-type calcium channels (LTCCs) in regulating neuronal electrophysiological properties during development remains unclear. We show that in basolateral amygdala principal neurons, an increase of LTCC activity alters both neuronal excitability and synaptic activity. The results also provide evidence for the distinct contributions of LTCCs at different stages of neurodevelopment and shed insight into our understanding of LTCC dysfunction in amygdala-related neurological disorders.

Funder

Gouvernement du Canada | Canadian Institutes of Health Research

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3