Tactile Speed Scaling: Contributions of Time and Space

Author:

Dépeault Alexandra,Meftah El-Mehdi,Chapman C. Elaine

Abstract

A major challenge for the brain is to extract precise information about the attributes of tactile stimuli from signals that co-vary with multiple parameters, e.g., speed and texture in the case of scanning movements. We determined the ability of humans to estimate the tangential speed of surfaces moved under the stationary fingertip and the extent to which the physical characteristics of the surfaces modify speed perception. Scanning speed ranged from 33 to 110 mm/s (duration of motion constant). Subjects could scale tactile scanning speed, but surface structure was essential because the subjects were poor at scaling the speed of a moving smooth surface. For textured surfaces, subjective magnitude estimates increased linearly across the range of speeds tested. The spatial characteristics of the surfaces influenced speed perception, with the roughest surface (8 mm spatial period, SP) being perceived as moving 15% slower than the smoother, textured surfaces (2–3 mm SP). Neither dot disposition (periodic, non periodic) nor dot density contributed to the results, suggesting that the critical factor was dot spacing in the direction of the scan. A single monotonic relation between subjective speed and temporal frequency (speed/SP) was obtained when the ratings were normalized for SP. This provides clear predictions for identifying those cortical neurons that play a critical role in tactile motion perception and the underlying neuronal code. Finally, the results were consistent with observations in the visual system (decreased subjective speed with a decrease in spatial frequency, 1/SP), suggesting that stimulus motion is processed similarly in both sensory systems.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3