Computational Study on Monkey VOR Adaptation and Smooth Pursuit Based on the Parallel Control-Pathway Theory

Author:

Tabata Hiromitsu12,Yamamoto Kenji34,Kawato Mitsuo15

Affiliation:

1. Kawato Dynamic Brain Project, ERATO, Japan Science and Technology Corporation, Kyoto 619-0288;

2. Nara Institute of Science and Technology, Ikoma-shi 630-0101;

3. Japan Science and Technology Corporation, Domestic Research Fellow;

4. National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8568; and

5. ATR Human Information Science Laboratory, Kyoto 619-0288, Japan

Abstract

Much controversy remains about the site of learning and memory for vestibuloocular reflex (VOR) adaptation in spite of numerous previous studies. One possible explanation for VOR adaptation is the flocculus hypothesis, which assumes that this adaptation is caused by synaptic plasticity in the cerebellar cortex. Another hypothesis is the model proposed by Lisberger that assumes that the learning that occurs in both the cerebellar cortex and the vestibular nucleus is necessary for VOR adaptation. Lisberger's model is characterized by a strong positive feedback loop carrying eye velocity information from the vestibular nucleus to the cerebellar cortex. This structure contributes to the maintenance of a smooth pursuit driving command with zero retinal slip during the steady-state phase of smooth pursuit with gain 1 or during the target blink condition. Here, we propose an alternative hypothesis that suggests that the pursuit driving command is maintained in the medial superior temporal (MST) area based on MST firing data during target blink and during ocular following blank, and as a consequence, we assume a much smaller gain for the positive feedback from the vestibular nucleus to the cerebellar cortex. This hypothesis is equivalent to assuming that there are two parallel neural pathways for controlling VOR and smooth pursuit: a main pathway of the semicircular canals to the vestibular nucleus for VOR, and a main pathway of the MST—dorsolateral pontine nuclei (DLPN)—flocculus/ventral paraflocculus to the vestibular nucleus for smooth pursuit. First, we theoretically demonstrate that this parallel control-pathway theory can reproduce the various firing patterns of horizontal gaze velocity Purkinje cells in the flocculus/ventral paraflocculus dependent on VOR in the dark, smooth pursuit, and VOR cancellation as reported in Miles et al. at least equally as well as the gaze velocity theory, which is the basic framework of Lisberger's model. Second, computer simulations based on our hypothesis can stably reproduce neural firing data as well as behavioral data obtained in smooth pursuit, VOR cancellation, and VOR adaptation, even if only plasticity in the cerebellar cortex is assumed. Furthermore, our computer simulation model can reproduce VOR adaptation automatically based on a heterosynaptic interaction model between parallel fiber inputs and climbing fiber inputs. Our results indicate that different assumptions about the site of pursuit driving command maintenance computationally lead to different conclusions about where the learning for VOR adaptation occurs. Finally, we propose behavioral and physiological experiments capable of discriminating between these two possibilities for the site of pursuit driving command maintenance and hence for the sites of learning and memory for VOR adaptation.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3