Breathing Frequency Changes at the Onset of Stepping in Human Infants

Author:

Noah J. Adam,Boliek Carol,Lam Tania,Yang Jaynie F.

Abstract

Breathing frequency increases at the onset of movement in a wide rage of mammals including adult humans. Moreover, the magnitude of increase in the rate of breathing appears related to the rate of the rhythmic movement. We determined whether human infants show the same type of response when supported to step on a treadmill. Twenty infants (ages 9.7 ± 1.2 mo) participated in trials consisting of sitting, stepping on the treadmill, followed by sitting again. Breathing frequency was recorded with a thermocouple, positioned under one naris and taped to a soother that the infant held in his/her mouth. A video camera, electrogoniometers, and force platforms under the treadmill belts recorded stepping movements. We found that the rate of breathing changed at the beginning of stepping. Most surprisingly, we found that when infants stepped at a frequency slower than their breathing frequency in sitting, the breathing frequency decreased. Average breathing frequency during stepping was positively correlated with stepping frequency. There was no evidence of entrainment between stepping and breathing. In conclusion, the rapid change in breathing frequency at the beginning of movement is functional in infants. The direction and magnitude of change in breathing is associated with the leg movements.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Motion Artifact Reduction In Photoplethysmography For Reliable Signal Selection;2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2021-11-01

2. Neural respiratory reflex elicited by arm movements;Gait & Posture;2017-10

3. Ventilation and Respiratory Mechanics;Comprehensive Physiology;2012-04

4. Arterial blood acidity and control of breathing during exercise;Respiratory Physiology & Neurobiology;2012-03

5. Passive limb movement augments ventilatory response to CO2 via sciatic inputs in anesthetized rats;Respiratory Physiology & Neurobiology;2009-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3