Membrane Capacitance Measurements Revisited: Dependence of Capacitance Value on Measurement Method in Nonisopotential Neurons

Author:

Golowasch Jorge12,Thomas Gladis3,Taylor Adam L.4,Patel Arif1,Pineda Arlene1,Khalil Christopher1,Nadim Farzan12

Affiliation:

1. Department of Mathematical Sciences, New Jersey Institute of Technology;

2. Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University;

3. Integrative Neuroscience Program, University of Medicine and Dentistry of New Jersey, Newark, New Jersey; and

4. Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts

Abstract

During growth or degeneration neuronal surface area can change dramatically. Measurements of membrane protein concentration, as in ion channel or ionic conductance density, are often normalized by membrane capacitance, which is proportional to the surface area, to express changes independently from cell surface variations. Several electrophysiological protocols are used to measure cell capacitance, all based on the assumption of membrane isopotentiality. Yet, most neurons violate this assumption because of their complex anatomical structure, raising the question of which protocol yields measurements that are closest to the actual total membrane capacitance. We measured the capacitance of identified neurons from crab stomatogastric ganglia using three different protocols: the current-clamp step, the voltage-clamp step, and the voltage-clamp ramp protocols. We observed that the current-clamp protocol produced significantly higher capacitance values than those of either voltage-clamp protocol. Computational models of various anatomical complexities suggest that the current-clamp protocol can yield accurate capacitance estimates. In contrast, the voltage-clamp protocol estimates rapidly deteriorate as isopotentiality is reduced. We provide a mathematical description of these results by analyzing a simple two-compartment model neuron to facilitate an intuitive understanding of these methods. Together, the experiments, modeling, and mathematical analysis indicate that accurate total membrane capacitance measurements cannot be obtained with voltage-clamp protocols in nonisopotential neurons. Furthermore, although current-clamp steps can theoretically yield accurate measurements, experimentalists should be aware of limitations imposed by step duration and numerical errors during fitting procedures to obtain the membrane time constant.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3