Signal Propagation in Oblique Dendrites of CA1 Pyramidal Cells

Author:

Migliore Michele,Ferrante Michele,Ascoli Giorgio A.

Abstract

The electrophysiological properties of the oblique branches of CA1 pyramidal neurons are largely unknown and very difficult to investigate experimentally. These relatively thin dendrites make up the majority of the apical tree surface area and constitute the main target of Schaffer collateral axons from CA3. Their electrogenic properties might have an important role in defining the computational functions of CA1 neurons. It is thus important to determine if and to what extent the back- and forward propagation of action potentials (AP) in these dendrites could be modulated by local properties such as morphology or active conductances. In the first detailed study of signal propagation in the full extent of CA1 oblique dendrites, we used 27 reconstructed three-dimensional morphologies and different distributions of the A-type K+ conductance ( KA), to investigate their electrophysiological properties by computational modeling. We found that the local KA distribution had a major role in modulating action potential back propagation, whereas the forward propagation of dendritic spikes originating in the obliques was mainly affected by local morphological properties. In both cases, signal processing in any given oblique was effectively independent of the rest of the neuron and, by and large, of the distance from the soma. Moreover, the density of KA in oblique dendrites affected spike conduction in the main shaft. Thus the anatomical variability of CA1 pyramidal cells and their local distribution of voltage-gated channels may suit a powerful functional compartmentalization of the apical tree.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3