Emergence of Sustained Spontaneous Hyperactivity and Temporary Preservation of off Responses in Ganglion Cells of the Retinal Degeneration (rd1) Mouse

Author:

Stasheff Steven F.

Abstract

Complex alterations in the anatomy of outer retinal pathways accompany photoreceptor degeneration in the rd1 mouse model of retinitis pigmentosa, whereas inner retinal neurons appear relatively preserved. However, the progressive loss of photoreceptor input likely alters the neural circuitry of the inner retina. This study investigated resulting changes in the activity of surviving ganglion cells. Multielectrode recording monitored spontaneous and light-evoked extracellular action potentials simultaneously from 30 to 90 retinal ganglion cells of wild-type ( wt) or rd1 mice. In rd1 mice, this activity evolves through three phases. First, normal spontaneous “waves” of correlated firing are seen at postnatal day 7 (P7) and last until shortly after eye opening. Second, at P14, full-field light flashes evoke reliable responses in many cells, with preferential preservation of off responses. These diminish as photoreceptor degeneration progresses. Third, once light-evoked responses have disappeared in early adulthood, surviving rd1 ganglion cells fire at a much higher spontaneous frequency than normal, sometimes in rhythmic bursts that are distinct from the developmental “waves.” This hyperactivity is sustained well into adulthood, for weeks after photoreceptors have disappeared. Thus striking alterations occur in inner retinal physiology as retinal degeneration progresses in the rd1 mouse. Blindness occurs in the face of sustained hyperactivity among ganglion cells, which remain viable for months despite this activity. On and off responses are differentially affected in early stages of degeneration. While the source of these changes remains to be learned, such features should be considered in designing more effective treatments for these disorders.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 207 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3