Local interneurons and projection neurons in the antennal lobe from a spiking point of view

Author:

Meyer Anneke12,Galizia C. Giovanni2,Nawrot Martin Paul13

Affiliation:

1. Neuroinformatik/Theoretical Neuroscience, Institute of Biology, Freie Universität Berlin, Berlin, Germany;

2. Department of Biology, University of Konstanz, Konstanz, Germany; and

3. Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany

Abstract

Local computation in microcircuits is an essential feature of distributed information processing in vertebrate and invertebrate brains. The insect antennal lobe represents a spatially confined local network that processes high-dimensional and redundant peripheral input to compute an efficient odor code. Social insects can rely on a particularly rich olfactory receptor repertoire, and they exhibit complex odor-guided behaviors. This corresponds with a high anatomical complexity of their antennal lobe network. In the honeybee, a large number of glomeruli that receive sensory input are interconnected by a dense network of local interneurons (LNs). Uniglomerular projection neurons (PNs) integrate sensory and recurrent local network input into an efficient spatio-temporal odor code. To investigate the specific computational roles of LNs and PNs, we measured several features of sub- and suprathreshold single-cell responses to in vivo odor stimulation. Using a semisupervised cluster analysis, we identified a combination of five characteristic features as sufficient to separate LNs and PNs from each other, independent of the applied odor-stimuli. The two clusters differed significantly in all these five features. PNs showed a higher spontaneous subthreshold activation, assumed higher peak response rates and a more regular spiking pattern. LNs reacted considerably faster to the onset of a stimulus, and their responses were more reliable across stimulus repetitions. We discuss possible mechanisms that can explain our results, and we interpret cell-type-specific characteristics with respect to their functional relevance.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3