The correlation of monkey medullary dorsal horn neuronal activity and the perceived intensity of noxious heat stimuli

Author:

Dubner R.1,Kenshalo D. R.1,Maixner W.1,Bushnell M. C.1,Oliveras J. L.1

Affiliation:

1. Neurobiology and Anesthesiology Branch, National Institute of DentalResearch, Bethesda, Maryland 20892.

Abstract

1. We examined the relationship between the activity of medullary dorsal horn nociceptive neurons and the monkeys' ability to detect noxious heat stimuli. In two different detection tasks, the temperature of a contact thermode positioned on the monkey's face increased from 38 degrees C to temperatures between 44 and 48 degrees C (T1). After a variable time period, the thermode temperature increased an additional 0.2-1.5 degrees C (T2), and the monkeys' detection speed from the onset of T2 was determined. We previously have established that detection speed is a measure of the perceived intensity of noxious thermal stimuli. Nociceptive neurons were classified as wide-dynamic-range (WDR, responsive to innocuous mechanical stimuli with greater responses to noxious mechanical stimuli) and nociceptive-specific (NS, responsive only to noxious stimuli). WDR neurons were subclassified as WDR1 and WDR2 based on the higher slope values of the stimulus-response functions of WDR1 neurons. The monkeys were trained to detect small increases in noxious heat, and their detection speeds were correlated with the responses of WDR1, WDR2, and NS neurons. 2. Detection speeds to T2 temperatures of 1.0 degrees C from preceding T1 temperatures of 45 and 46 degrees C were faster during a preceding ascending series of stimuli than during a descending series. Similarly, the peak discharge frequencies of WDR1 neurons in response to the same stimuli were greater during the ascending series of T2 temperatures. In contrast, the responses of WDR2 and NS neurons showed no significant differences during the ascending and descending series of stimuli. 3. Detection speeds following 0.4, 0.6, and 0.8 degrees C T2 stimuli were higher when the preceding T1 temperature was 46 degrees C as compared with detection speeds to the identical stimuli when the preceding T1 temperature was 45 degrees C. WDR1 neurons also exhibited a significant increase in peak discharge frequency to these same T2 stimuli when the preceding T1 temperature was 46 degrees C. In contrast, the neuronal activity of WDR2 and NS neurons did not differ on 45 and 46 degrees C T1 trials. 4. The relationship between detection speed and neuronal peak discharge frequency was examined in response to different pairs of T1 and T2 stimuli when T1 was either 45 or 46 degrees C. There was a significant correlation between detection speed and neuronal discharge for WDR1 and WDR2 neurons. No correlation was observed for NS neurons. 5. The magnitude of neuronal activity on correctly detected and nondetected trials was compared when T1 was 46 degrees C and T2 was 0.2 degree C.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3