EPSPs in rat neocortical neurons in vitro. I. Electrophysiological evidence for two distinct EPSPs

Author:

Sutor B.1,Hablitz J. J.1

Affiliation:

1. Department of Neurology, Baylor College of Medicine, Houston, Texas 77030.

Abstract

1. To investigate excitatory postsynaptic potentials (EPSPs), intracellular recordings were performed in layer II/III neurons of the rat medial frontal cortex. The average resting membrane potential of the neurons was more than -75 mV and their average input resistance was greater than 20 M omega. The amplitudes of the action potentials evoked by injection of depolarizing current pulses were greater than 100 mV. The electrophysiological properties of the neurons recorded were similar to those of regular-spiking pyramidal cells. 2. Current-voltage relationships, determined by injecting inward and outward current pulses, displayed considerable inward rectification in both the depolarizing and hyperpolarizing directions. The steady-state input resistance increased with depolarization and decreased with hyperpolarization, concomitant with increases and decreases, respectively, in the membrane time constant. 3. Postsynaptic potentials were evoked by electrical stimulation via a bipolar electrode positioned in layer IV of the neocortex. Stimulus-response relationships, determined by gradually increasing the stimulus intensity, were consistent among the population of neurons examined. A short-latency EPSP [early EPSP (eEPSP)] was the response with the lowest threshold. Amplitudes of the eEPSP ranged from 4 to 8 mV. Following a hyperpolarization of the membrane potential, the amplitude of the eEPSP decreased. Upon depolarization, a slight increase in amplitude and duration was observed, accompanied by a significant increase in time to peak. 4. The membrane current underlying the eEPSP (eEPSC) was measured using the single-electrode voltage-clamp method. The amplitude of the eEPSC was apparently independent of the membrane potential in 8 of 12 neurons tested. In the other 4 neurons, the amplitude of the eEPSC increased with hyperpolarization and decreased with depolarization. 5. Higher stimulus intensities evoked, in addition to the eEPSP, a delayed EPSP [late EPSP (lEPSP)] in greater than 90% of the neurons tested. The amplitude of the lEPSP ranged from 12 to 20 mV, and the latency varied between 20 and 60 ms. The amplitude of the lEPSP varied with membrane potential, decreasing with depolarization and increasing following hyperpolarization. The membrane current underlying the lEPSP (lEPSC) displayed a similar voltage dependence. 6. At stimulus intensities that led to the activation of inhibitory postsynaptic potentials (IPSPs), the lEPSP was no longer observed.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3