Effects of preventing reinnervation on axotomized spinal motoneurons in the cat. I. Motoneuron electrical properties

Author:

Pinter M. J.1,Vanden Noven S.1

Affiliation:

1. Department of Anatomy, Medical College of Pennsylvania, Philadelphia19129.

Abstract

1. The intent of this study was to determine the effect on the electrical properties of axotomized spinal motoneurons when motor axons are allowed to regenerate but are denied the opportunity to reinnervate muscle. 2. The nerve supplying the medial gastrocnemius (MG) muscle in cats was served close to its entry into the muscle and sutured onto the surface of the lateral gastrocnemius (LG) muscle. The MG muscle was excised to prevent availability of vacant end-plates to the regenerating MG axons. The electrical properties of antidromically identified MG motoneurons were studied using intracellular recording at various postoperative intervals. 3. In 9 of 12 experimental animals, no sign of functional innervation by MG axons of the LG muscle could be detected. In three experimental animals, electrical and contraction activity in the LG muscle was observed following electrical stimulation of the transplanted MG nerve. The observed electrical and contraction activity was, however, negligible compared to the effects of electrical stimulation of the intact LG-soleus nerve. 4. At the earliest postoperative interval studied (20 days), MG motoneuron electrical properties [input resistance, afterhyperpolarization (AHP) duration, conduction velocity, time constant, rheobase current, and sag] exhibited significant changes that were nearly identical to those described for spinal motoneurons following section of ventral roots or motor nerves or in the earliest stages of reinnervation. 5. At the 44-60 day postoperative (DPO) intervals, several motoneuron electrical properties showed signs of recovery to control levels. At 44 DPO, average values of input resistance, time constant, and AHP duration declined from the significant increases observed at 20 DPO and could not be distinguished statistically from control mean values. 6. These indications of an early recovery of normal electrical properties were not sustained. At subsequent postoperative intervals (90, 120, and 150-180 DPO), average values of motoneuron electrical properties tended to be similar to those observed at 20 DPO. 7. Correlations observed among control motoneuron electrical properties were weakened and the pattern of correlation was disrupted at all postoperative intervals. 8. In conjunction with previous results demonstrating recovery of normal electrical properties following reinnervation (Foehring et al. 1986b), our findings suggest that functional contact with muscle is required for the full expression of the normal range of motoneuron electrical properties.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3