Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the macaque monkey

Author:

Tanaka K.1,Fukada Y.1,Saito H. A.1

Affiliation:

1. Laboratory for Neural Information Processing, Frontier ResearchProgram, RIKEN, Saitama, Japan.

Abstract

1. The dorsal part of medial superior temporal area (MST) has two unique types of visually responsive cells: 1) expansion/contraction cells, which selectively respond to either an expansion or a contraction; and 2) rotation cells, which selectively respond to either a clockwise or a counterclockwise rotation. In addition to selectivity for the mode of motion, both types of cells respond preferentially to movements over a wide field rather than over a small field. With the aim of understanding the underlying mechanisms of these selectivities, we carried out experiments on immobilized monkeys anesthetized with N2O. 2. Expansion/contraction and rotation of a pattern extending over a wide field contain three stimulus factors: 1) the spatial arrangement of different directions of movement, 2) the gradient in the speed of regional movement from the center to the periphery of the stimulus, and 3) the size change of texture components of the pattern in the expansion/contraction and the acceleration of movement of texture components toward the center of the stimulus in the rotation. The contribution of each factor to the activation of the cells was evaluated by comparing the response before and after removing the factor from the stimulus. The moving stimuli that lacked one or two of the factors were produced by the use of a cinematographic animation technique. 3. Withdrawal of the first factor, the spatial arrangement of different directions of movement, reduced the response of both Expansion/contraction and Rotation cells much more severely than either of the other two factors. We concluded that the first factor is far more important for activation than the other two. 4. These results are consistent with the model that Expansion/contraction and Rotation cells receive converging inputs from many directional cells with relatively small receptive fields in different parts of the visual field. Because MST receives strong fiber projections from MT, MT cells are candidates for the input cells. According to the model, if the convergence is organized so that the preferred directions of the input cells are arranged radially, the target cell will be an Expansion/contraction cell; if the input cells are arranged circularly, a Rotation cell will result.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3