Responses of rat lateral hypothalamic neuronal activity to fastigial nucleus stimulation

Author:

Min B. I.1,Oomura Y.1,Katafuchi T.1

Affiliation:

1. Department of Physiology, Faculty of Medicine, Kyushu University, Fukuoka, Japan.

Abstract

1. The aim of this study was investigation of neuronal mechanisms underlying inputs from the fastigial nucleus (FN) to the lateral hypothalamic area (LHA). 2. In male anesthetized rats, 295 extracellular and 82 intracellular recordings of LHA responses to electrical stimulation of the FN, which elicited stimulus-locked pressor responses, were examined. 3. Contralateral FN stimulation evoked three types of responses in 48% of spontaneously firing LHA neurons: inhibition with 11 +/- 6 (SD) ms latency followed by excitation (30%), excitation with 15 +/- 12.5 ms latency (14%), and excitation followed by inhibition with 6 +/- 4 ms latency (4%). 4. Contralateral FN stimulation after transection of the inferior cerebellar peduncle (ICP), which resulted in a substantial fall of the fastigial pressor response, also evoked the three types of responses. These responses were unaffected by transection of the ICP. 5. Neuronal activity was recorded intracellularly from 82 LHA neurons, of which 36 (44%) responded to FN stimulation. Of the 36 neurons, 24 showed inhibitory postsynaptic potentials (IPSPs) with a mean latency of 7.5 +/- 2 ms. Of the 24 neurons, 16 were checked for change in IPSP latency with stimulus intensity, and 11 were considered to be monosynaptically connected since their latencies were constant when FN stimulation intensity was changed. The remaining 12 exhibited excitatory postsynaptic potentials (EPSPs) with a longer latency of 10.5 +/- 3 ms, which indicated polysynaptic conduction. The reversal potentials of the IPSP and EPSP were estimated to be about -77 mV and -13 mV, respectively. 6. Most glucose-sensitive neurons (78%), which were identified by their inhibition in response to electrophoretically applied glucose, were inhibited by FN stimulation, whereas only 7% of the glucose-insensitive neurons responded to such stimulation. 7. From the results, it was concluded that LHA neurons receive inhibitory monosynaptic and excitatory polysynaptic inputs from the FN via the superior cerebellar peduncle. These connections may contribute to hypothalamic modulation of feeding behavior.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3