Properties of motor units in nerve-intact autografts of cat extensor digitorum longus muscles

Author:

Sandercock T. G.1,Cote C.1,Faulkner J. A.1

Affiliation:

1. Department of Physiology, University of Michigan, Ann Arbor48109.

Abstract

1. In cats, isometric contractile properties were measured on five extensor digitorum longus (EDL) muscles and four EDL muscle grafts 150-270 days after autografting with nerves intact. Comparisons were made between the properties of whole muscles and grafts and between 36 motor units in control EDL muscles and 41 motor units in grafts. 2. The time-to-peak twitch force (TPT) of 23 +/- 1.7 (SE) ms for grafts was significantly prolonged compared with the value of 17 +/- 0.7 ms observed for whole EDL muscles. The mean values for the TPT of motor units were not different from the respective values for whole grafts or for whole muscles. The maximum specific force of whole grafts of 19.7 +/- 0.6 (SE) N/cm2 was significantly less than the control value of 23.6 +/- 0.6 N/cm2, an observation consistent with all previous data on the maximum specific force of grafts and control muscles. 3. Based on the presence or absence of sag and an index of fatigue, motor units were classified as fast fatigable (FF), fast intermediate (FI), fast fatigue-resistant (FR), and slow (S). Motor units were classified 33% FF, 22% FI, 27% FR, and 17% S in control muscles and 17% FF, 43% FI, 29% FR, and 12% S in autografted muscles. Compared with control muscles, the number of small FF units increased significantly in the autografts, but no significant difference was observed in the fatigue properties of motor units.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Motor Unit Properties of Nerve-Intact Extensor Digitorum Longus Muscle Grafts In Young and Old Rats;The Journals of Gerontology Series A: Biological Sciences and Medical Sciences;2001-06-01

2. Maximum and Sustained Power of Extensor Digitorum Longus Muscles From Young, Adult, and Old Mice;Journal of Gerontology;1991-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3