Synaptic connections between motor neurons and interneurons in the fourth thoracic ganglion of the crayfish, Procambarus clarkii

Author:

Chrachri A.1,Clarac F.1

Affiliation:

1. Laboratoire de Neurobiologie et de Physiologie Comparees, Arcachon,France.

Abstract

1. A new preparation of the thoracic nervous system of the crayfish, Procambarus clarkii, has been developed, in which it is possible to work with identified members of motor neuronal pools. 2. In such a preparation, it is possible to dissect all specific proximal motor nerves (protractor, retractor, anterior elevator, posterior elevator, and depressor). Motor neurons innervating the four proximal muscles of the fourth walking leg have been identified both physiologically and anatomically by staining the recorded motor neuron with Lucifer yellow through the microelectrode. 3. By the use of cobalt chloride, we have mapped the distribution of somata of all motor neurons within the fourth thoracic ganglion that innervate the different groups of muscles controlling the movement of the fourth walking leg. 4. Most motor neurons innervating the same muscle seem to be electrically coupled, except some depressor motor neurons. 5. Motor neurons innervating antagonist muscles are linked by inhibitory connections. These connections are reciprocal for protractor and retractor motor neurons but usually not reciprocal between elevator and depressor motor neurons. 6. Walking interneurons were identified as neurons without axons in any motor nerve, which modified the motor neuronal activity. Some of them have been injected with Lucifer yellow. 7. Some interneurons make synaptic connections only with antagonist motor neurons that control the movement of one joint. Probably their functional role is to reinforce or to limit the antagonism between each pair of antagonist motor neurons. 8. Other interneurons make synaptic connections with motor neurons innervating muscles controlling different leg joints. These interneurons may play a role in generating the motor patterns that underlie forward and backward walking.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sensory Feedback in the Control of Posture and Locomotion;Neurobiology of Motor Control;2017-06-23

2. Motor Pattern Selection;Neurobiology of Motor Control;2017-06-23

3. Underwater Vehicles Based on Biological Intelligence;Mechanical Engineering;2016-03-01

4. Central Pattern Generator;Biomechanics and Motor Control;2016

5. A network model comprising 4 segmental, interconnected ganglia, and its application to simulate multi-legged locomotion in crustaceans;Journal of Computational Neuroscience;2015-04-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3