Serotonergic/cholinergic muscle receptor cells in the crab stomatogastric nervous system. I. Identification and characterization of the gastropyloric receptor cells

Author:

Katz P. S.1,Eigg M. H.1,Harris-Warrick R. M.1

Affiliation:

1. Section of Neurobiology and Behavior, Cornell University, Ithaca, NewYork 14853.

Abstract

1. Serotonin (5-hydroxytryptamine) immunohistochemistry was used to locate and anatomically describe a set of four muscle receptor cells in the stomatogastric nervous system of the crabs Cancer borealis and Cancer irroratus. We found that these sensory cells, which we named gastropyloric receptor (GPR) cells, are the sole source of serotonergic inputs to the stomatogastric ganglion (STG) in these species. Thus any endogenous serotonergic modulation of the central pattern generators (CPGs) in the STG must be afferent and not descending from other ganglia. 2. There are two bilateral pairs of GPR cells. Each pair consists of two cell types (GPR1 and GPR2) based on differences in muscle innervation and physiological response characteristics. GPR2 responds in a mostly tonic fashion to increases in muscle tension caused by passive stretch or motor neuron-evoked contraction, whereas GPR1 responds more phasically and adapts more rapidly. Both GPR cell types project to the midline STG and terminate in each of the bilaterally paired commissural ganglia (COGs). 3. The GPR cells have sensory endings unlike any described for other muscle receptor cells: the terminals enter invaginations of the muscle surface and end near the z-bands of the muscle. These novel structures may be involved in the sensory transduction process. 4. The GPR cells may contain acetylcholine in addition to serotonin, as indicated by the presence of choline acetyltransferase (ChAT) in GPR2 (Table 1) and probably GPR1 as well. 5. The GPR cells have no direct effect on muscle properties or neuromuscular transmission: excitatory junctional potential (EJP) amplitude and motor neuron-evoked tension are unaffected by GPR stimulation. However, very low concentrations of exogenously applied serotonin do cause an increase in motor neuron-evoked muscle tension, probably reflecting a hormonal action of the amine. 6. The activity of GPR2 was monitored in a semi-intact preparation. GPR2 is active in phase with normal movements of the gastric mill. GPR2 is also capable of endogenous rhythmic activity. This indicates that even in the absence of mechanical stimulation, the GPR cells may still provide patterned input to the CPGs in the STG. 7. The GPR cells are proprioceptive cells that use serotonin and acetylcholine as cotransmitters. It is important to characterize these cells to understand the role of serotonergic modulation in the production of motor programs by stomatogastric CPGs.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3