Contribution of the otoliths to the calculation of linear displacement

Author:

Israel I.1,Berthoz A.1

Affiliation:

1. Laboratoire de Physiologie Neurosensorielle, Centre National de laRecherche Scientifique, Paris, France.

Abstract

1. The present work is a quantitative study of the eye movements induced by linear translation when the subject is instructed to stabilize his gaze on a memorized earth-fixed target. These experiments may allow a better understanding of the central processing of otolithic signals. 2. Human subjects were submitted to either sinusoidal or step-like horizontal linear displacements along the interaural (Y)-axis in darkness, seated in a cart moving along a linear track. Each subject's head was fixed by a helmet secured to the cart. They were asked to keep their eyes on an earth-fixed memorized target at 63 cm from them on the X-axis. 3. During sinusoidal motion, a combination of low smooth compensatory eye movements and of compensatory saccades allowed the subjects to track the memorized target. The linear model of the responses of five subjects (seven sessions) exhibited a near-ideal slope of 1.14 (range 0.84-1.58). Two subjects did not compensate properly for their displacement. The mean "vestibular-saccadic" (VS) gain (ratio of overall eye movement peak-peak amplitude versus head displacement amplitude) was 1.52 +/- 0.80 (SD), showing an overestimation of head displacement. 4. The otolith-ocular reflex (OOR) mean gain values (ratio of slow phase cumulated peak-peak amplitude versus head displacement amplitude) were about 0.13 degrees/cm. This value is 5 times higher than what has been reported in the literature, probably due to the fact that the target was at a short distance. 5. The number of saccades occurring during sinusoidal stimulations varied according to the different subjects. They were obviously compensatory saccades and not quick phases. They indicate that although the gain of the OOR was small, the brain has computed the adequate desired eye position. 6. During steplike head displacements in darkness, although the OOR gain was also small, seven of the eight subjects could stabilize their gaze with a mean VS gain of 1.01 +/- 0.70. The linear model for the pooled responses of these subjects exhibited a slope of 0.82. 7. When subjects were instructed not to move their eyes during the translation, three of the five examined could still correctly reproduce the head movement amplitude with saccades, even as late as 50 s after motion had stopped. This indicates that head displacement was stored with the adequate metrics and could be used to drive the saccadic system. 8. Bilabyrinthectomized patients could not perform any adequate gaze stabilization. This shows that the observed performance was of vestibular origin.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3