Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex

Author:

Chagnac-Amitai Y.1,Connors B. W.1

Affiliation:

1. Division of Biology and Medicine, Brown University, Providence, RhodeIsland 02912.

Abstract

1. The cellular mechanisms of synchronous synaptic activity were studied in isolated slices of rat SmI neocortex in which gamma-aminobutyric acid (GABA)-mediated inhibition was slightly suppressed. Intracellular measurements were made from single neurons, and extracellular recordings monitored the timing and intensity of population events. 2. Neurons in cortical layers II-VI were classified by the attributes of their single action potentials and repetitive firing patterns during injection of intracellular current pulses. Regular-spiking (RS) cells occurred in all layers and had relatively long-duration spikes and strong frequency adaptation. Intrinsically bursting (IB) cells occurred only in layers IV and V and generated bursts of greater than or equal to 3 spikes; some IB cells of lower-layer V produced repetitive bursts during long depolarizing pulses. Fast-spiking (FS) cells had brief spikes and little or no adaptation and fired at high frequencies. 3. When GABAA-mediated inhibition was slightly reduced with low doses of bicuculline methiodide (BMI, 0.8-1.0 microM), synchronous events were evoked by stimulating layer VI with single shocks. Synchronous events were characterized by prominent, often all-or-none extracellular field potentials that propagated horizontally for variable distances up to several millimeters. Large field potentials were invariably correlated with excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs) in single neurons. Both PSPs and field potentials often had long (up to 250 ms) and variable latencies, and sometimes two or more events were generated by single stimuli. In all cases the PSPs and field potentials were synchronous. Both field potentials and single cells sometimes generated short epochs (3-7 peaks) of rhythmic events at 20-50 Hz. 4. The physiological class of single neurons was correlated with the relative dominance of excitation and inhibition during each synchronous event. In phase with each synchronous event, most RS cells were very strongly inhibited with only small amounts of concurrent excitation. By contrast, IB cells were strongly and consistently excited, with relatively little inhibition. FS cells were also phasically excited. 5. Anatomic studies have identified RS and IB cells as pyramidal cells and FS cells as GABAergic nonpyramidal cells. This implies that, during the synchronous events of the present study, the majority of pyramidal cells were dominated by IPSPs. Synchronous excitation of FS cells, the presumed inhibitory interneurons, is consistent with this. Only a subset of the pyramidal neurons, almost all of them IB cells of the middle layers, displayed strong, synchronous excitation and clusters of action potentials.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 341 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3