Spatiospectral properties of goldfish retinal ganglion cells

Author:

Bilotta J.1,Abramov I.1

Affiliation:

1. Department of Psychology, Brooklyn College, City University of NewYork 11210.

Abstract

1. Responses of single ganglion cells from isolated goldfish retinas were recorded during presentation of various spatial and spectral stimuli. Each cell was classified along several spatial [spatial summation class, spatial contrast sensitivity function (CSF), and response to contrast] and spectral (Red-ON, Red-OFF or Red-ON/OFF, and spectral opponency/nonopponency) dimensions. 2. Linearity of spatial summation was determined from responses to contrast-reversal sinusoidal gratings positioned at various locations across the receptive field of the cell. CSFs were derived from responses to sinusoidal gratings of various spatial frequencies and contrasts, drifting across the cell's receptive field at a rate of 4 Hz. Response to contrast was determined from responses to variations in contrast of a sinusoidal grating of optimal spatial frequency. Spectral classifications were based on responses to monochromatic stimuli presented separately to the center and surround portions of the receptive field. 3. Linearity of spatial summation (X-, Y-, and W-like) was independent of the cell's spectral properties; for example, an X-like cell could be classified as either a Red-ON, Red-OFF, or Red-ON/OFF center cell and as spectrally opponent or nonopponent. 4. There were differences in response to contrast across spectral categories. Red-OFF center cells were very sensitive to contrast compared with Red-ON center cells. Spectrally nonopponent cells were more responsive to contrast than spectrally opponent cells. 5. There were dramatic differences across the spectral categories in relative sensitivity to low spatial frequency stimuli; however, the spatial resolution (i.e., sensitivity to high spatial frequencies) of each spectral classification appeared to be similar.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3