Membrane current underlying muscarinic cholinergic excitation of motoneurons in lobster cardiac ganglion

Author:

Freschi J. E.1,Livengood D. R.1

Affiliation:

1. Department of Neurology, Emory University School of Medicine, Atlanta,Georgia 30322.

Abstract

1. We studied the effect of cholinergic agonists on motoneurons of the lobster cardiac ganglion under voltage clamp. 2. In unclamped neurons, acetylcholine (ACh) caused a depolarization and increase in burst potential frequency. By the use of nicotinic and muscarinic agonists, we determined that both types of receptors are present on the neurons. We therefore used specific muscarinic agonists to further study ionic mechanisms underlying the muscarinic cholinergic current (Imch). 3. Muscarinic agonists produced detectable inward current at doses above 10(-6) M, and maximum effect was seen at doses above 10(-3) M. 4. Imch was voltage-dependent. When the membrane holding potential was shifted to levels negative to the resting potential, the response declined, nulling but not reversing at -80 to -100 mV. The response enlarged with membrane depolarization, reaching a maximum at between -30 and -10 mV. With further depolarization, the response declined and then reversed at potentials around +20 mV. 5. The muscarinic response varied as a function of extracellular Na+ concentration and was completely blocked in Na+-free solutions. The relationship between response amplitude and external Na+ was well described by the electrodiffusion equation for Na+ driving force. 6. Imch amplitude also varied as a function of extracellular potassium concentration, becoming larger with low external K+ and smaller at higher concentrations. Shifting the Cl- equilibrium potential did not affect the properties of the Imch. 7. Tetrodotoxin (TTX) had no effect on Imch. In concentrations of 1-10 mM, such K+-channel blocking agents as Ba2+, Cs+, 4-aminopyridine (4-AP), or tetraethylammonium (TEA), and such Ca2+-channel blockers as Co2+ or Mn2+, when applied externally, did not suppress Imch. Above 30 mM, TEA did inhibit the response, and combinations of K+-channel blocking agents, each at concentrations insufficient alone to block the current, also inhibited Imch. 8. Current-voltage (I-V) curves obtained during muscarinic agonist perfusion consistently crossed the control I-V curves at a mean membrane potential of +24 mV. The reversal potential shifted to a more negative value in low extracellular Na+. 9. Although no reversal of Imch was seen when agonists were applied to cells clamped at negative holding potentials, the averaged curve of Imch, obtained by subtracting control ramp I-V curves from those obtained in the presence of agonist, did show a small net outward current at membrane potentials negative to -100 mV.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3