Temporal coding of envelopes and their interaural delays in the inferior colliculus of the unanesthetized rabbit

Author:

Batra R.1,Kuwada S.1,Stanford T. R.1

Affiliation:

1. Department of Anatomy, University of Connecticut Health Center,Farmington 06032.

Abstract

1. The difference in the time of arrival of a sound at the two ears can be used to locate its source along the azimuth. Traditionally, it has been thought that only the on-going interaural temporal disparities (ITDs) produced by sounds of lower frequency (approximately less than 2 kHz) could be used for this purpose. However, ongoing ITDs of low frequency are also produced by envelopes of amplitude-modulated (AM) tones. These ITDs can be detected and used to lateralize complex high-frequency sounds (1, 8, 12, 15, 22, 24, 26). Auditory neurons synchronize to the modulation envelope, but do so at progressively lower modulation frequencies at higher levels of the auditory pathway. Some neurons of the cochlear nucleus synchronize best to frequencies as high as 700 Hz, but those of the inferior colliculus (IC) exhibit their best synchrony below 200 Hz. Even though synchrony to higher modulation frequencies is reduced at higher levels of the auditory pathway, is information about ITDs retained? 2. We answered this question by extracellularly recording the responses of neurons in the IC of the unanesthetized rabbit. We used an unanesthetized preparation because anesthesia alters the responses of neurons in the IC to both monaurally presented tones and ITDs. The unanesthetized rabbit is ideal for auditory research. Recordings can be maintained for long periods, and the acoustic stimulus to each ear can be independently controlled. 3. We studied the responses of 89 units to sinusoidally AM tones presented to the contralateral ear. For each unit, we recorded the response at several modulation frequencies. The degree of phase locking to the envelope at each frequency was measured using the synchronization coefficient. Two measures were used to assess the range of modulation frequencies over which phase locking occurred. The "best AM frequency" was the frequency at which we observed the greatest phase locking. The "highest AM frequency" was the highest frequency at which significant phase locking (0.001 level) was observed. We could not assess synchrony to ipsilateral AM tones directly, because most units did not respond to ipsilateral stimulation. 4. We studied the sensitivity of 63 units to ITDs produced by the envelopes of AM tones. Sensitivity to ITDs was tested by presenting AM tones to the two ears that had the same carrier frequency, but modulation frequencies that differed by 1 Hz. Units that were sensitive to ITDs responded to this stimulus by varying their response rate cyclically at the difference frequency, i.e., 1 Hz.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3