Abstract
Neural dynamics within recurrent cortical networks is an important component of neural processing. However, the learning rules that allow networks composed of hundreds or thousands of recurrently connected neurons to develop stable dynamical states are poorly understood. Here I use a neural network model to examine the emergence of stable dynamical states within recurrent networks. I describe a learning rule that can account both for the development of stable dynamics and guide networks to states that have been observed experimentally, specifically, states that instantiate a sparse code for time. Across trials, each neuron fires during a specific time window; by connecting the neurons to a hypothetical set of output units, it is possible to generate arbitrary spatial-temporal output patterns. Intertrial jitter of the spike time of a given neuron increases as a direct function of the delay at which it fires. These results establish a learning rule by which cortical networks can potentially process temporal information in a self-organizing manner, in the absence of specialized timing mechanisms.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献