Relationship between electrophysiological signature and defined sensory modality of trigeminal ganglion neurons in vivo

Author:

Boada M. Danilo1

Affiliation:

1. Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina; and Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain

Abstract

The trigeminal ganglia (TG) innervate a heterogeneous set of highly sensitive and exposed tissues. Weak, innocuous stimuli can evoke pain as a normal response in some areas such as the cornea. This observation implies, however, the capability of low-threshold mechanoreceptors, inducing pain in the normal condition. To clarify this matter, the present study correlates the electrical signature (both fiber conduction velocity and somatic electrical properties) with receptor field, mechanical threshold, and temperature responsiveness of sensory afferents innervating tissues with dissimilar sensitivity (skin vs. cornea) in the trigeminal domain. Intracellular recordings were obtained in vivo from 148 neurons of the left TG of 62 mice. In 111 of these neurons, the peripheral receptor field was successfully localized: 96 of them innervated the hairy skin, while the remaining 15 innervated the cornea. The electrical signature was defined and peripheral responses correlated with tissue target. No high threshold neurons were found in the cornea. Moreover, the electrical signature of corneal afferents resembles nociceptive neurons in the skin. TG skin afferents showed similar membrane electrical signature and sensory modality as skin afferents from dorsal root ganglion, although TG afferents exhibited a shorter duration of afterhyperpolarization then those previously described in dorsal root ganglion. These data suggest than new or different ways to classify and study TG sensory neurons may be required.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3