On Use of a Nominal Internal Model to Detect a Loss of Balance in a Maximal Forward Reach

Author:

Ahmed Alaa A.,Ashton-Miller James A.

Abstract

We hypothesize that the CNS detects a loss of balance by comparing outputs predicted by a nominal, forward internal model with actual sensory outputs. When the resulting control error signal reaches an anomalously large value, this control error anomaly (CEA) signals a loss of balance and precedes any observable compensatory response. To test this hypothesis, a multi-input, multi-output internal model of a standing forward reach task was developed that incorporated on-line model identification and a Gaussian failure detection algorithm. Eleven healthy young women were then asked to stand and reach forward to a target positioned from 95 to 125% of their maximum reach distance. Kinematic and kinetic data were recorded at 100 Hz unilaterally from the upper body, leg, and foot. Evidence of successful CEA detection was a compensatory step between 100 ms and 2 s later. The results show that use of a threshold, set at 3 SD from the mean, on error in the control of leg segment acceleration detected a CEA and correctly predicted a compensatory response in 92.6% of 108 trials. Leg acceleration control error was a better predictor than upper body or foot acceleration control error ( P = 0.000). CEA detection performed more reliably than loss of balance detection algorithms based on kinematic thresholds ( P = 0.000). The results support the hypothesis that a loss of balance may be identified via the use of a nominal forward internal model and probabilistic error monitoring.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3