Long-Term Retention of Gait Stability Improvements

Author:

Bhatt T.,Pai Y.-C.

Abstract

Evidence of long-term modification of behavior—in particular, gait alterations in response to repeated exposure to slips—within the locomotor-balance control system is limited. The purpose of this study was to examine whether improvements in fall-resisting behavior as reflected by improvements in gait stability could be retained on a long-term basis. Eight healthy young subjects were exposed to a block of repeated slip trials during a single acquisition session consisting of five repeated slip exposures; the same subjects were then re-tested using the same protocol at a minimum of 12 mo later. Pre- and postslip gait stability for all slip trials was measured at touchdown (slipping limb) and liftoff (contralateral limb) based on the center of mass state (i.e., its instantaneous position and velocity) relative to the base of support (BOS) and the predicted thresholds for backward loss of balance. In the acquisition session, subjects were able to increase pre- and postslip stability, which significantly correlated with a decrease in the incidence of balance loss from 100% (1st slip) to 0% (5th slip). All subjects exhibited a similar balance loss on the first slip of the follow-up session. Nonetheless, subjects were able to retain the acquired preslip stability with feedforward control on the first slip but not the postslip stability related to the reactive response. Also, the subjects demonstrated a faster re-acquisition, with only one balance loss on the second slip of the follow-up session, as compared with seven balance losses on the acquisition session. Such rapid improvements were achieved by the significantly greater increase in post- compared with preslip stability; this increase was for the most part, a consequence of reductions in slip intensity (i.e., the peak BOS velocity). We concluded that a single acquisition session could only produce limited long-term retainable effects within the locomotor-balance control system. It appeared, however, that the CNS was still primed to more rapidly update its internal representation of gait stability during re-acquisition.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Reference42 articles.

1. Postural control is scaled to level of postural threat

2. Andres RO, Eng T, and O’Connor D.Sagittal plane kinematics of walking onto a slippery surface and gait adaptations from continuous walking on slippery surfaces.Slipping, Tripping, and Falling Accident Conference, London, 1991.

3. Fall Injuries in the Elderly

4. Slip, trip and fall accidents occurring during the delivery of mail

5. Bhatt T, Wening JD, and Pai Y-C.Adaptive control of gait stability in reducing slip-related backward loss of balance.Exp Brain ResIn press 2005a.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3