Recruitment of a contralateral head turning synergy by stimulation of monkey supplementary eye fields

Author:

Chapman Brendan B.1,Pace Michael A.1,Cushing Sharon L.2,Corneil Brian D.1345

Affiliation:

1. Graduate Program in Neuroscience and

2. Department of Otolaryngology-Head and Neck Surgery, Hospital for Sick Children, University of Toronto, Toronto; and

3. Departments of 2Physiology and Pharmacology and

4. Psychology, University of Western Ontario, London;

5. Centre for Brain and Mind, Robarts Research Institute, London, Ontario, Canada

Abstract

The supplementary eye fields (SEF) are thought to enable higher-level aspects of oculomotor control. The goal of the present experiment was to learn more about the SEF's role in orienting, specifically by examining neck muscle recruitment evoked by stimulation of the SEF. Neck muscle activity was recorded from multiple muscles in two monkeys during SEF stimulation (100 μA, 150–300 ms, 300 Hz, with the head restrained or unrestrained) delivered 200 ms into a gap period, before a visually guided saccade initiated from a central position (doing so avoids confounds between initial position and prestimulation neck muscle activity). SEF stimulation occasionally evoked overt gaze shifts and/or head movements but almost always evoked a response that invariably consisted of a contralateral head turning synergy by increasing activity on contralateral turning muscles and decreasing activity on ipsilateral turning muscles (when background activity was present). Neck muscle responses began well in advance of evoked gaze shifts (∼30 ms after stimulation onset, leading gaze shifts by ∼40–70 ms on average), started earlier and attained a larger magnitude when accompanied by progressively larger gaze shifts, and persisted on trials without overt gaze shifts. The patterns of evoked neck muscle responses resembled those evoked by frontal eye field (FEF) stimulation, except that response latencies from the SEF were ∼10 ms longer. This basic description of the cephalomotor command evoked by SEF stimulation suggests that this structure, while further removed from the motor periphery than the FEF, accesses premotor orienting circuits in the brain stem and spinal cord in a similar manner.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3