Electroencephalographic detection of respiratory-related cortical activity in humans: from event-related approaches to continuous connectivity evaluation

Author:

Hudson Anna L.1,Navarro-Sune Xavier2,Martinerie Jacques3,Pouget Pierre3,Raux Mathieu24,Chavez Mario3,Similowski Thomas25ORCID

Affiliation:

1. Neuroscience Research Australia and University of New South Wales, Sydney, Australia;

2. Sorbonne Universités, Université Pierre et Marie Curie, University of Paris 06, Institut National de la Santé et de la Recherche Médicale, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France;

3. Centre National de la Recherche Scientifique UMR7225 at the Institut du Cerveau et de la Moelle Épinière, Paris, France;

4. Assistance Publique-Hopitaux de Paris (AP-HP), Groupe Hospitalier Pitie-Salpêtrière-Charles Foix, Département d'Anesthésie-Réanimation, Paris, France; and

5. AP-HP, Groupe Hospitalier Pitie-Salpêtrière-Charles Foix, Service de Pneumologie et Réanimation Medicale, Paris, France

Abstract

The presence of a respiratory-related cortical activity during tidal breathing is abnormal and a hallmark of respiratory difficulties, but its detection requires superior discrimination and temporal resolution. The aim of this study was to validate a computational method using EEG covariance (or connectivity) matrices to detect a change in brain activity related to breathing. In 17 healthy subjects, EEG was recorded during resting unloaded breathing (RB), voluntary sniffs, and breathing against an inspiratory threshold load (ITL). EEG were analyzed by the specially developed covariance-based classifier, event-related potentials, and time-frequency (T-F) distributions. Nine subjects repeated the protocol. The classifier could accurately detect ITL and sniffs compared with the reference period of RB. For ITL, EEG-based detection was superior to airflow-based detection ( P < 0.05). A coincident improvement in EEG-airflow correlation in ITL compared with RB ( P < 0.05) confirmed that EEG detection relates to breathing. Premotor potential incidence was significantly higher before inspiration in sniffs and ITL compared with RB ( P < 0.05), but T-F distributions revealed a significant difference between sniffs and RB only ( P < 0.05). Intraclass correlation values ranged from poor (−0.2) to excellent (1.0). Thus, as for conventional event-related potential analysis, the covariance-based classifier can accurately predict a change in brain state related to a change in respiratory state, and given its capacity for near “real-time” detection, it is suitable to monitor the respiratory state in respiratory and critically ill patients in the development of a brain-ventilator interface.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3