Responses of thalamic neurons to itch- and pain-producing stimuli in rats

Author:

Lipshetz Brett1,Khasabov Sergey G.2,Truong Hai1,Netoff Theoden I.3ORCID,Simone Donald A.2,Giesler Glenn J.1

Affiliation:

1. Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota

2. Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, Minnesota

3. Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota

Abstract

Understanding of processing and transmission of information related to itch and pain in the thalamus is incomplete. In fact, no single unit studies of pruriceptive transmission in the thalamus have yet appeared. In urethane-anesthetized rats, we examined responses of 66 thalamic neurons to itch- and pain- inducing stimuli including chloroquine, serotonin, β-alanine, histamine, and capsaicin. Eighty percent of all cells were activated by intradermal injections of one or more pruritogens. Forty percent of tested neurons responded to injection of three, four, or even five agents. Almost half of the examined neurons had mechanically defined receptive fields that extended onto distant areas of the body. Pruriceptive neurons were located within what appeared to be a continuous cell column extending from the posterior triangular nucleus (PoT) caudally to the ventral posterior medial nucleus (VPM) rostrally. All neurons tested within PoT were found to be pruriceptive. In addition, neurons in this nucleus responded at higher frequencies than did those in VPM, an indication that PoT might prove to be a particularly interesting region for additional studies of itch transmission. NEW & NOTEWORTHY Processing of information related to itch within in the thalamus is not well understood, We show in this, the first single-unit electrophysiological study of responses of thalamic neurons to pruritogens, that itch-responsive neurons are concentrated in two nuclei within the rat thalamus, the posterior triangular, and the ventral posterior medial nuclei.

Funder

HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3