Affiliation:
1. Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
2. University Paris-VII and Institut National de la Santé et de la Recherche Médicale U.483, Paris, France
Abstract
We demonstrate that in the macaque monkey there is robust, short-latency facilitation by ventral premotor cortex (area F5) of motor outputs from primary motor cortex (M1) to contralateral intrinsic hand muscles. Experiments were carried out on two adult macaques under light sedation (ketamine plus medetomidine HCl). Facilitation of hand muscle electromyograms (EMG) was tested using arrays of fine intracortical microwires implanted, respectively, in the wrist/digit motor representations of F5 and M1, which were identified by previous mapping with intracortical microstimulation. Single pulses (70–200 μA) delivered to F5 microwires never evoked any EMG responses, but small responses were occasionally seen with double pulses (interval: 3 ms) at high intensity. However, both single- and double-pulse stimulation of F5 could facilitate the EMG responses evoked from M1 by single shocks. The facilitation was large (up to 4-fold with single and 12-fold with double F5 shocks) and occurred with an early onset, with significant effects at intervals of only 1–2 ms between conditioning F5 and test M1 stimuli. A number of possible pathways could be responsible for these effects, although it is argued that the most likely mechanism would be the facilitation, by cortico-cortical inputs from F5, of corticospinal I wave activity evoked from M1. This facilitatory action could be of considerable importance for the coupling of grasp-related neurons in F5 and M1 during visuomotor tasks.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
130 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献