Different Combinations of GABAA and GABAC Receptors Confer Distinct Temporal Properties to Retinal Synaptic Responses

Author:

Lukasiewicz Peter D.1,Shields Colleen R.1

Affiliation:

1. Department of Ophthalmology and Visual Sciences and Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110

Abstract

Lukasiewicz, Peter D. and Colleen R. Shields. Different combinations of GABAA and GABAC receptors confer distinct temporal properties to retinal synaptic responses. J. Neurophysiol. 79:3157–3167, 1998. This study addresses how γ-aminobutyric acid-A(GABAA) and GABAC receptors confer distinct temporal properties to neuronal synaptic responses. The retina is a model system for the study of postsynaptic contributions to synaptic responses because GABAergic amacrine cells synapse onto neurons, which have different combinations of GABAA and GABAC receptors. It is not known, however, how GABAA versus GABAC receptors influence the time course of retinal synaptic responses or what proportion of inhibitory input is mediated by each receptor type. We examined the time courses of synaptic responses mediated by GABA receptors in ganglion and bipolar cells by recording currents evoked by activating amacrine cells with a stimulating electrode in the salamander retinal slice. The pharmacologically isolated, GABAergic synaptic currents were long-lasting in bipolar cells and relatively brief in ganglion cells. The receptors that mediated these temporally distinct synaptic responses exhibited different pharmacological properties. In ganglion cells, GABAergic synaptic currents were abolished by the GABAA receptor antagonists bicuculline or SR95531. In bipolar cells, the GABAC receptor antagonist 3-aminopropyl[methyl]phosphonic acid (3-APMPA) largely blocked GABAergic synaptic responses; the remaining response was blocked by bicuculline or SR95531. The GABAA receptor component of the bipolar cell response was relatively brief compared with the GABAC receptor component. Puffing GABA onto ganglion cell dendrites or bipolar cell terminals yielded similar pharmacological and kinetic results, indicating that transmitter release differences did not determine the response time courses. Moreover, the GABAC receptors on bipolar cells may be different from those reported in rat or fish retina because imidazole-4-acetic acid (I4AA), which acts as an antagonist in these preparations, acts as an agonist in salamander. Our data show that the prolonged synaptic responses in bipolar cells were mediated predominantly by GABAC receptors, whereas transient synaptic responses in ganglion cells were mediated by GABAA receptors.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3