Affiliation:
1. Department of Physiology, Tokyo Medical and Dental University School of Medicine, Tokyo 113-8519, Japan
Abstract
Momose-Sato, Yoko, Katsushige Sato, Akihiko Hirota, and Kohtaro Kamino. GABA-induced intrinsic light-scattering changes associated with voltage-sensitive dye signals in embryonic brain stem slices: coupling of depolarization and cell shrinkage. J. Neurophysiol. 79: 2208–2217, 1998. We have found new evidence for γ-aminobutyric acid (GABA)-induced intrinsic optical changes associated with a voltage-sensitive dye signal in the early embryonic chick brain stem slice. The slices were prepared from 8-day-old embryos, and they were stained with a voltage-sensitive dye (NK2761). Pressure ejection of GABA to one site within the preparation elicited optical changes. With 580-nm incident light, two components were identified in the GABA-induced optical change. The first component was wavelength dependent, whereas the second, slower change was independent of wavelength. Comparison with the known action spectrum of the dye indicates that the first component reflects a depolarization of the membrane and that the second, slow component is a light-scattering change resulting from cell shrinkage coupled with the depolarization. Similar optical changes also were induced by glycine, although the amplitude of both the first and second signals was much smaller than for GABA. The optical changes induced by GABA persisted in the presence of picrotoxin and 2-hydroxysaclofen, suggesting that these optical responses include a novel GABA response, which has been termed GABAD in our previous reports.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献