Full Weight-Bearing Hindlimb Standing Following Stand Training in the Adult Spinal Cat

Author:

De Leon R. D.1,Hodgson J. A.2,Roy R. R.2,Edgerton V. R.12

Affiliation:

1. Department of Physiological Science and

2. Brain Research Institute, University of California, Los Angeles, California 90095

Abstract

De Leon, R. D., J. A. Hodgson, R. R. Roy, and V. R. Edgerton. Full weight-bearing hindlimb standing following stand training in the adult spinal cat. J. Neurophysiol. 80: 83–91, 1998. Behavioral and physiological characteristics of standing were studied in nontrained spinal cats and in spinal cats that received daily stand training of the hindlimbs for 12 wk. Training consisted of assisting the cats to stand with full weight support either on both hindlimbs or on one hindlimb (30 min/day, 5 days/wk). Extensor muscle electromyographic (EMG) amplitude and extension at the knee and ankle joints during full weight bearing recovered to prespinal levels in both stand-trained and nontrained spinal cats. However, full weight bearing of the hindquarters was sustained for up to ∼20 min in the spinal cats that received bilateral stand training compared with ∼4 min in cats that were not trained to stand. Unilateral stand training selectively improved weight bearing on the trained limb based on ground reaction forces and extensor muscle EMG activity levels measured during bilateral standing. These results suggest that the capacity of the adult lumbar spinal cord to generate full weight-bearing standing can be improved by as much as fivefold by the repetitive activation of selected neural pathways in the spinal cord after supraspinal connectivity has been eliminated. Given that stepping is improved in response to step training, it appears that the recovery of standing provides another example of training-specific motor learning in the spinal cord, i.e., the spinal cord learns to perform hindlimb standing by practicing that specific task.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3