Matching Patterns of Activity in Primate Prefrontal Area 8a and Parietal Area 7ip Neurons During a Spatial Working MemoryTask

Author:

Chafee Matthew V.1,Goldman-Rakic Patricia S.2

Affiliation:

1. Brain Sciences Center, Department of Veterans Affairs Medical Center Minneapolis, Minnesota 55417; and

2. Section of Neurobiology, Yale University School of Medicine New Haven, Connecticut 06520

Abstract

Chafee, Matthew V. and Patricia S. Goldman-Rakic. Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J. Neurophysiol. 79: 2919–2940, 1998. Single-unit recording studies of posterior parietal neurons have indicated a similarity of neuronal activation to that observed in the dorsolateral prefrontal cortex in relation to performance of delayed saccade tasks. A key issue addressed in the present study is whether the different classes of neuronal activity observed in these tasks are encountered more frequently in one or the other area or otherwise exhibit region-specific properties. The present study is the first to directly compare these patterns of neuronal activity by alternately recording from parietal area 7ip and prefrontal area 8a, under the identical behavioral conditions, within the same hemisphere of two monkeys performing an oculomotor delayed response task. The firing rate of 222 posterior parietal and 235 prefrontal neurons significantly changed during the cue, delay, and/or saccade periods of the task. Neuronal responses in the two areas could be distinguished only by subtle differences in their incidence and timing. Thus neurons responding to the cue appeared earliest and were more frequent among the task-related neurons within parietal cortex, whereas neurons exhibiting delay-period activity accounted for a larger proportion of task-related neurons in prefrontal cortex. Otherwise, the task-related neuronal activities were remarkably similar. Cue period activity in prefrontal and parietal cortex exhibited comparable spatial tuning and temporal duration characteristics, taking the form of phasic, tonic, or combined phasic/tonic excitation in both cortical populations. Neurons in both cortical areas exhibited sustained activity during the delay period with nearly identical spatial tuning. The various patterns of delay-period activity—tonic, increasing or decreasing, alone or in combination with greater activation during cue and/or saccade periods—likewise were distributed to both cortical areas. Finally, similarities in the two populations extended to the proportion and spatial tuning of presaccadic and postsaccadic neuronal activity occurring in relation to the memory-guided saccade. The present findings support and extend evidence for a faithful duplication of receptive field properties and virtually every other dimension of task-related activity observed when parietal and prefrontal cortex are recruited to a common task. This striking similarity attests to the principal that information shared by a prefrontal region and a sensory association area with which it is connected is domain specific and not subject to hierarchical elaboration, as is evident at earlier stages of visuospatial processing.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3