Forms of Forward Quadrupedal Locomotion. III. A Comparison of Posture, Hindlimb Kinematics, and Motor Patterns for Downslope and Level Walking

Author:

Smith Judith L.1,Carlson-Kuhta Patricia1,Trank Tamara V.1

Affiliation:

1. Department of Physiological Science, Laboratory of Neuromotor Control, University of California, Los Angeles, California 90095-1568

Abstract

Smith, Judith L., Patricia Carlson-Kuhta, and Tamara V. Trank. Forms of forward quadrupedal locomotion. III. A comparison of posture, hindlimb kinematics, and motor patterns for downslope and level walking. J. Neurophysiol. 79: 1702–1716, 1998. To gain further insight into the neural mechanisms for different forms of quadrupedal walking, data on postural orientation, hindlimb kinematics, and motor patterns were assessed for four grades of downslope walking, from 25% (14° slope) to 100% (45°), and compared with data from level and downslope walking at five grades (5–25%) on the treadmill (0.6 m/s). Kinematic data were obtained by digitizing ciné film, and electromyograms (EMGs) synchronized with kinematic records were taken from 13 different hindlimb muscles. At grades from 25 to 75%, cycle periods were similar, but at the steepest grade the cycle was shorter because of a reduced stance phase. Paw-contact sequences at all grades were consistent with lateral-sequence walking, but pace walking often occurred at the steepest grades. The cats crouched at the steeper grades, and crouching was associated with changes in fore- and hindlimb orientation that were consistent with increasing braking forces and decreasing propulsive forces during stance. The average ranges of motion at the hindlimb joints, except at the hip, were often different at the two steepest slopes. During swing, the range of knee- and ankle-joint flexion decreased, and the range and duration of extension increased at the ankle joint to lower the paw downward for contact. During stance the range of flexion during yield increased at the ankle joint, and the range of extension decreased at the knee and metatarsophalangeal joints. Downslope walking was also associated with EMG changes for several muscles. The hip extensors were not active during stance; instead, hip flexors were active, presumably to slow the rate of hip extension. Although ankle extensors were active during stance, their burst durations were truncated and centered around paw contact. Ankle flexors were active after midstance at the steeper slopes before the need to initiate swing, whereas flexor and extensor digit muscles were coactive throughout stance. Overall the changes in posture, hindlimb kinematics, and activity patterns of hindlimb muscles during stance reflected a need to counteract external forces that would accelerate angular displacements at some joints. Implications of these changes are discussed by using current models for the neural control of walking.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3