Ionic Mechanism of the Slow Afterdepolarization Induced by Muscarinic Receptor Activation in Rat Prefrontal Cortex

Author:

Haj-Dahmane Samir1,Andrade Rodrigo1

Affiliation:

1. Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan 48201

Abstract

Haj-Dahmane, Samir and Rodrigo Andrade. Ionic mechanism of the slow afterdepolarization induced by muscarinic receptor activation in rat prefrontal cortex. J. Neurophysiol. 80: 1197–1210, 1998. The mammalian prefrontal cortex receives a dense cholinergic innervation from subcortical regions. We previously have shown that cholinergic stimulation of layer V pyramidal neurons of the rat prefrontal cortex results in a depolarization and the appearance of a slow afterdepolarization (sADP). In the current report we examine the mechanism underlying the sADP with the use of sharp microelectrode and whole cell recording techniques in in vitro brain slices. The ability of acetylcholine (ACh) and carbachol to induce the appearance of an sADP in pyramidal cells of layer V of prefrontal cortex is antagonized in a surmountable manner by atropine and is mimicked by application of muscarine or oxotremorine. These results indicate that ACh acts on muscarinic receptors to induce the sADP. In many cell types afterpotentials are triggered by calcium influx into the cell. Therefore we examined the possibility that calcium influx might be the trigger for the generation of the sADP. Consistent with this possibility, buffering intracellular calcium reduced or abolished the sADP but had little effect on the direct muscarinic receptor-induced depolarization also seen in these cells. These results, coupled to the previous observation that calcium channel blockers inhibit the sADP, indicated that the sADP results from a rise in intracellular calcium secondary to calcium influx into the cell. The ionic basis for the current underlying the sADP ( I sADP) was examined with the use of ion substitution experiments. The amplitude of I sADP was found to be reduced in a graded fashion by replacement of extracellular sodium with N-methyl-d-glucamine (NMDG). In contrast no clear evidence for the involvement of potassium or chloride channels in the generation of the sADP or I sADP could be found. This result indicated that I sADP is carried by sodium ions flowing into the cell. However, the dependence of I sADP on extracellular sodium was less pronounced than expected for a pure sodium current. We interpret these results to indicate that the sADP is most likely mediated by nonselective cation channels. Examination of the current underlying the sADP at different voltages indicated that this current was also voltage dependent, turning off with hyperpolarization. We conclude that the sADP elicited by muscarinic receptor activation in rat cortex is mediated predominantly by a calcium- and voltage-sensitive nonselective cation current. This current could represent an important mechanism through which ACh can regulate neuronal excitability in prefrontal cortex.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3