Affiliation:
1. Department of Physiology, University of Utah School of Medicine, Salt Lake City, Utah 84108
Abstract
Ma, Li and William C. Michel. Drugs affecting phospholipaseC-mediated signal transduction block the olfactory cyclic nucleotide-gated current of adult zebrafish. J. Neurophysiol. 79: 1183–1192, 1998. Amino acid and bile salt odorants are detected by zebrafish with relatively independent odorant receptors, but the transduction cascade(s) subsequently activated by these odorants remains unknown. Electro-olfactogram recording methods were used to determine the effects of two drugs, reported to affect phospholipase C (PLC)/inositol tripohsphate (IP3)-mediated olfactory transduction in other vertebrate species, on amino acid and bile salt-evoked responses. At the appropriate concentrations, either an IP3-gated channel blocker, ruthenium red (0.01–0.1 μM), or a PLC inhibitor, neomycin (50 μM), reduced amino-acid–evoked responses to a significantly greater extent than bile salt-evoked responses. Excised patch recording techniques were used to measure the affects of these drugs on second-messenger–activated currents. Ruthenium red and neomycin are both effective blockers of the olfactory cyclic nucleotide-gated (CNG) current. Both drugs blocked the CNG channel in a voltage-dependent and reversible manner. No IP3-activated currents could be recorded. The differential effects of ruthenium red and neomycin on odor-evoked responses suggest the activation of multiple transduction cascades. The nonspecific actions of these drugs on odor-activated transduction pathways and our inability to record an IP3-activated current do not permit the conclusion that zebrafish, like other fish species, use a PLC/IP3-mediated transduction cascade in the detection of odorants.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献