New Look at Force-Frequency Relationship of Human Skeletal Muscle: Effects of Fatigue

Author:

Binder-Macleod Stuart A.1,Lee Samuel C. K.1,Fritz April D.1,Kucharski Lorin J.1

Affiliation:

1. Department of Physical Therapy, University of Delaware, Newark, Delaware 19716

Abstract

Binder-Macleod, Stuart A., Samuel C. K. Lee, April D. Fritz, and Lorin J. Kucharski. New look at force-frequency relationship of human skeletal muscle: effects of fatigue. J. Neurophysiol. 79: 1858–1868, 1998. A muscle does not have a unique force-frequency relationship; rather, it is dynamic and depends on the activation history of muscle. The purpose of this study was to investigate the force-frequency relationship of nonfatigued and fatigued skeletal muscle with the use of both catchlike-inducing trains (CITs) that exploited the catchlike property of skeletal muscle and constant-frequency trains (CFTs). Quadriceps femoris muscles were studied during isometric contractions in twelve healthy subjects (5 females, 7 males). Both the peak force and force-time integrals produced in response to each stimulation train were analyzed. Compared with nonfatigued muscles, higher frequencies of activation were needed to produce comparable normalized peak forces when the muscles were fatigued (i.e., a “rightward” shift in the force-frequency relationship) for both the CFTs and the CITs. When using the normalized force-time integral to measure muscle performance, the CFTs required slightly higher frequencies to produce comparable normalized forces from fatigued muscles, but the CITs did not. Furthermore, when the muscles were fatigued, the CITs produced greater peak forces and force-time integrals than all comparable CFTs with frequencies ≤20 pps. In general, the lower the frequency the greater the augmentation produced by the CITs. In addition, the CIT that elicited the greatest force-time integral produced a 25% greater force-time integral than the best CFT. Because the CITs augmented forces across a wide range of physiological relevant activation rates, these results may have important clinical implications when using electrical stimulation to aid patients with paralysis. The results of this study contribute to our understanding of the relationship between the activation pattern of a muscle and the force output produced.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3