Position and Velocity Coupling of Postural Sway to Somatosensory Drive

Author:

Jeka John1,Oie Kelvin1,Schöner Gregor2,Dijkstra Tjeerd3,Henson Elaine1

Affiliation:

1. Department of Kinesiology, University of Maryland, College Park, Maryland 20742;

2. Centre de Recherche en Neurosciences Cognitives, Centre National de la Recherche Scientifique, 13402 Marseille 20, France; and

3. Department of Psychology, Ohio State University, Columbus, Ohio 43210

Abstract

Jeka, John, Kelvin Oie, Gregor Schöner, Tjeerd Dijkstra, and Elaine Henson. Position and velocity coupling of postural sway to somatosensory drive. J. Neurophysiol. 79: 1661–1674, 1998. Light touch contact of a fingertip to a stationary surface provides orientation information that enhances control of upright stance. Slight changes in contact force at the fingertip lead to sensory cues about the direction of body sway, allowing attenuation of sway. In the present study, the coupling of postural sway to a moving contact surface was investigated in detail. Head, center of mass, and center of pressure displacement were measured as the contact surface moved rhythmically at 0.1, 0.2, 0.4, 0.6, and 0.8 Hz. Stimulus amplitude decreased with frequency to maintain peak velocity constant across frequency. Head and body sway were highly coherent with contact surface motion at all frequencies except 0.8 Hz, where a drop-off in coherence was observed. Mean frequency of head and body sway matched the driving frequency ≤0.4 Hz. At higher frequencies, non-1:1 coupling was evident. The phase of body sway relative to the touch plate averaged 20–30° at 0.1-Hz drive and decreased approximately linearly to −130° at 0.8-Hz drive. System gain was ∼1 across frequency. The large phase lags observed cannot be accounted for with velocity coupling alone but indicate that body sway also was coupled to the position of the touch plate. Fitting of a linear second-order model to the data suggests that postural control parameters are not fixed but adapt to the moving frame of reference. Moreover, coupling to both position and velocity suggest that a spatial reference frame is defined by the somatosensory system.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 128 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3