Temporal Contrast Enhancement via GABAC Feedback at Bipolar Terminals in the Tiger Salamander Retina

Author:

Dong Cun-Jian1,Werblin Frank S.1

Affiliation:

1. Department of Molecular and Cell Biology, Division of Neurobiology, University of California at Berkeley, Berkeley, California 94720

Abstract

Dong, Cun-Jian and Frank S. Werblin. Temporal contrast enhancement via GABAC feedback at bipolar terminals in the tiger salamander retina. J. Neurophysiol. 79: 2171–2180, 1998. Most retinal amacrine (ACs) and ganglion cells (GCs) express temporal contrast by generating action potentials at only the onset and offset of the light stimulus. This study investigated the neural mechanisms that underlie this temporal contrast enhancement. Whole cell patch recordings were made from bipolar cells (BCs), ACs, and GCs in the retinal slice preparation. The cells were identified by the locations of their somas in the inner nuclear layer and ganglion cell layers, their characteristic light responses, and morphology revealed by Lucifer yellow staining. Depolarizing a single BC with a brief voltage pulse elicited a Cl tail current that was completely abolished when Ca2+ entry to bipolar terminals was prevented, by either removing Ca2+ from the Ringer solution or blocking Ca2+ channels with Co2+. This suggests that the Cl current is Ca2+-dependent. In those bipolar cells whose axon terminals were cutoff during slicing no Cl current was observed, indicating that this current is generated at the synaptic terminals. The Cl current consists of a predominant synaptic component that can be blocked by the non- N-methyl-d-aspartate (NMDA) glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) or by the γ-aminobutyric acid-C (GABAC) receptor antagonist picrotoxin. There also exists a relatively small nonsynaptic component. Thus both glutamatergic and GABAergic transmission were involved in the generation of this Cl current, suggesting that it is mediated by a recurrent feedback to bipolar cells. Picrotoxin, which blocks both GABAC receptors at BC terminals and GABAA receptors on the dendrites of ACs and GCs, converted the light-elicited voltage response in most on-off ACs and GCs from transient to sustained. Bicuculline, which blocks only the GABAA receptors, did not prolong the transient response in on-off ACs and GCs. This suggests that a negative feedback mediated by the GABAC receptor on the bipolar terminals is responsible for making these responses transient. After the GABAergic feedback was blocked with picrotoxin the light-elicited voltage responses (recorded under current clamp) were more sustained than the current responses (recorded under voltage clamp) to the same light stimuli. This suggests that a voltage-dependent conductance converts the relatively transient current responses to more sustained voltage responses. Our results imply a synaptically driven local GABAergic feedback at bipolar terminals, mediated by GABAC receptors. This feedback appears to be a significant component of the mechanism underlying temporal contrast enhancement in on-off ACs and GCs.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 138 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3