Commutative Saccadic Generator Is Sufficient to Control a 3-D Ocular Plant With Pulleys

Author:

Quaia Christian1,Optican Lance M.1

Affiliation:

1. Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, Maryland 20892

Abstract

Quaia, Christian and Lance M. Optican. Commutative saccadic generator is sufficient to control a 3-D ocular plant with pulleys. J. Neurophysiol. 79: 3197–3215, 1998. One-dimensional models of oculomotor control rely on the fact that, when rotations around only one axis are considered, angular velocity is the derivative of orientation. However, when rotations around arbitrary axes [3-dimensional (3-D) rotations] are considered, this property does not hold, because 3-D rotations are noncommutative. The noncommutativity of rotations has prompted a long debate over whether or not the oculomotor system has to account for this property of rotations by employing noncommutative operators. Recently, Raphan presented a model of the ocular plant that incorporates the orbital pulleys discovered, and qualitatively modeled, by Miller and colleagues. Using one simulation, Raphan showed that the pulley model could produce realistic saccades even when the neural controller is commutative. However, no proof was offered that the good behavior of the Raphan-Miller pulley model holds for saccades different from those simulated. We demonstrate mathematically that the Raphan-Miller pulley model always produces movements that have an accurate dynamic behavior. This is possible because, if the pulleys are properly placed, the oculomotor plant (extraocular muscles, orbital pulleys, and eyeball) in a sense appears commutative to the neural controller. We demonstrate this finding by studying the effect that the pulleys have on the different components of the innervation signal provided by the brain to the extraocular muscles. Because the pulleys make the axes of action of the extraocular muscles dependent on eye orientation, the effect of the innervation signals varies correspondingly as a function of eye orientation. In particular, the Pulse of innervation, which in classical models of the saccadic system encoded eye velocity, here encodes a different signal, which is very close to the derivative of eye orientation. In contrast, the Step of innervation always encodes orientation, whether or not the plant contains pulleys. Thus the Step can be produced by simply integrating the Pulse. Particular care will be given to describing how the pulleys can have this differential effect on the Pulse and the Step. We will show that, if orbital pulleys are properly located, the neural control of saccades can be greatly simplified. Furthermore, the neural implementation of Listing's Law is simplified: eye orientation will lie in Listing's Plane as long as the Pulse is generated in that plane. These results also have implications for the surgical treatment of strabismus.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 130 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3