Noise-Induced Tuning Curve Changes in Mechanoreceptors

Author:

Ivey Chandra12,Apkarian A. Vania12,Chialvo Dante R.23

Affiliation:

1. Department of Neurosurgery and

2. Computational Neuroscience Program, SUNY Health Sciences Center, Syracuse, New York 13210; and

3. Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, Arizona 85724

Abstract

Ivey, Chandra, A. Vania Apkarian, and Dante R. Chialvo. Noise-induced tuning curve changes in mechanoreceptors. J. Neurophysiol. 79: 1879–1890, 1998. Fibers from the tibial nerve of rat were isolated and spike activity recorded using monopolar hook electrodes. The receptive field (RF) of each recorded unit on the glabrous skin of the foot was mechanically stimulated with waveforms comprised of various frequency sine waves in addition to increasing levels of white noise. Single-unit responses were recorded for both rapidly adapting (RA) and slowly adapting (SA) units. Signal-to-noise ratio (SNR) of the output was quantified by the correlation coefficient ( C 1) between the input sine wave and the nerve responses. The addition of noise enhanced signal transmission in both RA and SA fibers. With increasing noise, the initially inverted “V”-shaped, zero-noise tuning curves for RA fibers broadened and eventually inverted. There was a large expansion of the frequencies that the RA receptor responded to with increasing noise input. On the other hand, the typical shape of the SA fiber tuning curves remained invariant, at all noise levels tested. C 1 values continued to increase with larger noise input for higher frequencies, but did not do so at the lowest frequencies. For both RA and SA fibers the responses with added noise tended to be rate modulated at the low-frequency end, and followed nonlinear stochastic resonance (SR) properties at the higher frequencies. The changes in the tuning properties due to noise found here, as well as preliminary psychophysics data, imply that external noise is relevant for sensing small periodic signals in the environment. All current models of sensory perception assume that the tuning properties of receptors determined in the absence of noise are preserved during everyday tasks. Our results indicate that this is not true in a noisy environment.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3