Neurotransmitter-Induced Novel Modulation of a Nonselective Cation Channel by a cAMP-Dependent Mechanism in Rat Pineal Cells

Author:

Darvish Nissim1,Russell James T.1

Affiliation:

1. Laboratory of Cellular and Molecular Neurophysiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892

Abstract

Darvish, Nissim and James T. Russell. Neurotransmitter-induced novel modulation of a nonselective cation channel by a cAMP-dependent mechanism in rat pineal cells. J. Neurophysiol. 79: 2546–2556, 1998. In the rat, circadian rhythm in melatonin is regulated by noradrenergic and neuropeptide inputs to the pineal via adenosine 3′,5′-cyclic monophosphate (cAMP)- and Ca2+-dependent mechanisms. We have identified a large conductance (170 pS), voltage-dependent, nonselective cation channel on rat pineal cells in culture that shows a novel mode of modulation by cAMP. Pituitary adenylate cyclase activating peptide (PACAP), norepinephrine, or 8-Br-cAMP increase channel open probability ( P o) with a hyperpolarizing shift in voltage dependence such that the channel becomes active at resting membrane potentials. The increase in P o was accompanied by a change in current rectification properties such that the channel was transformed from being inactive at rest to an inwardly rectifying cation conductance in the presence of agonist, which depolarizes the cell. This channel is calcium insensitive, is blocked by Cs+, and shows a permeability sequence: K+ > Na+ ≥ NH+ 4 > Li+. The data suggest thatPACAP and norepinephrine acting through a cAMP-dependent mechanism modulate this nonselective cation channel, resulting in a slow onset depolarization that may be important in regulation of pineal cell excitability.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3