Comparison of the Discharge Characteristics of Brain Stem Omnipause Neurons and Superior Colliculus Fixation Neurons in Monkey: Implications for Control of Fixation and Saccade Behavior

Author:

Everling Stefan1,Paré Martin1,Dorris Michael C.1,Munoz Douglas P.1

Affiliation:

1. Department of Physiology, Medical Research Council Group in Sensory-Motor Neuroscience, Queen's University, Kingston, Ontario K7L 3N6, Canada

Abstract

Everling, Stefan, Martin Paré, Michael C. Dorris, and Douglas P. Munoz. Comparison of the discharge characteristics of brain stem omnipause neurons and superior colliculus fixation neurons in monkey: implications for control of fixation and saccade behavior. J. Neurophysiol. 79: 511–528, 1998. Fixation neurons (SCFNs) in the rostral pole of the superior colliculus (SC) and omnipause neurons (OPNs) in the nucleus raphe interpositus (rip) in the pons share similar discharge properties. Both types of neurons discharge tonically during periods of visual fixation and pause for saccadic eye movements, and their activation by electrical stimulation suppresses saccade generation. On the basis of these similarities and the projection from the rostral SC to the rip, it was hypothesized that SCFNs provide a major excitatory input to OPNs. We investigated the role and relationship of SCFNs and OPNs with respect to both fixation behavior and saccade generation by comparing their activity recorded in the same monkeys performing a gap saccade task. In this task, the central fixation point was extinguished 200 ms before the presentation of an eccentric saccadic target, and the discharges of OPNs and SCFNs were contrasted during visual fixation, nonvisual (gap) fixation, and saccade generation. During visual fixation, the mean discharge rate of OPNs was higher and more regular than that of SCFNs. During the gap period, SCFNs decreased their discharge rate before target appearance, whereas no change in discharge rate was observed in OPNs. For both SCFNs and OPNs, the activity level before target appearance was not correlated to saccadic reaction time. In contrast to SCFNs, several OPNs responded with a transient phasic increase in discharge immediately after the target presentation. Before their saccade-related pause, there was a gradual reduction in the activity of SCFNs, whereas OPNs had an abrupt cessation of discharge. SCFNs paused earlier than OPNs, but the OPN pause onset was better synchronized to saccade onset than the SCFN pause onset. OPNs resumed firing after their pause in activity earlier than SCFNs, and the OPN pause end was better synchronized to saccade end than the SCFN pause end. These physiological data reveal differences in the discharge properties of SCFNs and OPNs that are irreconcilable with the hypothesis that the discharge pattern of OPNs reflects simply the excitatory input from SCFNs. It is most likely that additional inputs to OPNs compensate for the reduction in discharge of SCFNs during these periods.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 171 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3