Mechanisms for Force Adjustments to Unpredictable Frictional Changes at Individual Digits During Two-Fingered Manipulation

Author:

Birznieks Ingvars1,Burstedt Magnus K. O.1,Edin Benoni B.1,Johansson Roland S.1

Affiliation:

1. Department of Physiology, Umeå University, SE-901 87 Umeå, Sweden

Abstract

Birznieks, Ingvars, Magnus K. O. Burstedt, Benoni B. Edin, and Roland S. Johansson. Mechanisms for force adjustments to unpredictable frictional changes at individual digits during two-fingered manipulation. J. Neurophysiol. 80: 1989–2002, 1998. Previous studies on adaptation of fingertip forces to local friction at individual digit–object interfaces largely focused on static phases of manipulative tasks in which humans could rely on anticipatory control based on the friction in previous trials. Here we instead analyze mechanisms underlying this adaptation after unpredictable changes in local friction between consecutive trials. With the tips of the right index and middle fingers or the right and left index fingers, subjects restrained a manipulandum whose horizontal contact surfaces were located side by side. At unpredictable moments a tangential force was applied to the contact surfaces in the distal direction at 16 N/s to a plateau at 4 N. The subjects were free to use any combination of normal and tangential forces at the two fingers, but the sum of the tangential forces had to counterbalance the imposed load. The contact surface of the right index finger was fine-grained sandpaper, whereas that of the cooperating finger was changed between sandpaper and the more slippery rayon. The load increase automatically triggered normal force responses at both fingers. When a finger contacted rayon, subjects allowed slips to occur at this finger during the load force increase instead of elevating the normal force. These slips accounted for a partitioning of the load force between the digits that resulted in an adequate adjustment of the normal:tangential force ratios to the local friction at each digit. This mechanism required a fine control of the normal forces. Although the normal force at the more slippery surface had to be comparatively low to allow slippage, the normal forces applied by the nonslipping digit at the same time had to be high enough to prevent loss of the manipulandum. The frictional changes influenced the normal forces applied before the load ramp as well as the size of the triggered normal force responses similarly at both fingers, that is, with rayon at one contact surface the normal forces increased at both fingers. Thus to independently adapt fingertip forces to the local friction the normal forces were controlled at an interdigital level by using sensory information from both engaged digits. Furthermore, subjects used both short- and long-term anticipatory mechanisms in a manner consistent with the notion that the central nervous system (CNS) entertains internal models of relevant object and task properties during manipulation.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3